
7 LANWNNI) SIN TO(U) RIR FORCE INST OF TECH
aIIT-NTTERSON W@ ON SCHOOL OF ENRIS! N H WOORMA

IUCLMSSFIED S? DEC 97 AFIT/UE4NS4 -3 F/S 12/5 M* f"79AU u uX M UDIT RATV nu uuRWAEDEC IuTO
mmmmhhmhhhumEmhhhhmhmhmhhmhhmmhhhhhul

~~mhhhhmh

~% % *

31 5

-m-
1-8.

1* 6.

lei

i .
00

2- -I

% "U.

S"p.¢

A UNIX-BASED INTERACTIVE

VHDL SIMUJLATOR

THESIS

t Harvey H. Kodama

Second Lieutenant, USAF

AFIT/GE/ENG/87D-33

DTIC
AM-ELP-1ECTE , ii
N MAR 0 21988 ' "i

DEPARTMENT OF THE AIR FORCE LAIR UNIVERSITY-

AIR FORCE INSTITUTE OF TECHNOLOGY:':

Wright-Patterson Air Force Base, Ohio ,

DISTBUTVON STASIMUATO

Apprved or ub~cre arve H. Koda0 2

DAa/NbuGon U/l87tD '

DT-C.

AFIT/GE/ENG/87D-33

THESIS

,a H.

Scn LuntU

.3'llJ" T

o... E

il%, %

THESIS "'

Harvey H. Kodama '.'.

Second Licutcnant, USAF "-DTIC
ULECTE D

MAR 0 21988 '-119
S"S.-

Approved for public release; distribution unlimited.,,

'S. .'S 'S - * SJ~'°SJ'I . o 'S'

:-' ' , - 5 S -,, - - - ., S 'SSS'tSS.S::::-SSm4% 'SS.'. -

AFIT/GEIENG/87D-33

A ~ ~ ~ ~ ~ ~ ~ ~ .UNXBSDINEATV HD IUAO

THESIS

Presnte to he aculy o th Schol f Eninerin

of te Ar Foce nstiuteof Tchnlog

Air Unversit

In Prtia Fulillmnt o th

Requremnts or he Dgre of astr ofScince n Eginerin

A~~ ~~~ UNIXBASE INER1TV VHDoSMULTO

Secon Lieuenant USA

Decembr 198

Appovd or ubiTHeeaseistiuonnfite

N.N.

Ip
r%?U~w

% .

Preface

I

This thesis involved the design of a VII)l, simulator in the C progra muting language to

be operated in a UNIX environment. The simulator was developed concurrently with the

\N'IDI. analyzer. Together, the VhDL analyzer and simulator make a significant contribution

to the AFIT VIIDL Environment (AVE), and provide the academic coinuimmily with a VIIDl.

toolset that operates under the UNIX operating system.

The development of tile VIIDL simulator provided an opportnhity to -t udy tile area of

software engineering as it applies to VLSI design. I wish to express my appreciation to those

VIDL group members whose input helped to make the thesis effort the success it was. In %

particular, I wish to acknowledge my thesis advisor, Maj Joe DeGroat, for his guidance and.
I

support throughout the thesis effort. I would also like to thank Capt Randy lBratton, who I've

turned to on many occasions with my "C" questions, and CPT Mike Dukes, who helped

navigate me through the VMS operating system, where the commercial VI)L simulator

resides.

Finally, I would like to thank my wife, Mary, for her encouragement, and understanding is.

throughout the AFIT experience, enduring the hardship of separation and expressing genuine P

concern in my thesis progression. V

Aooession For

NTIS GRA&I
DTIC TAB ~

.,d%

ju i f_,t If,

SAvi 1r 't I ; / 1

U 's t

-- ,'" ":vt v ...-. ..': - ..:... .,- , , ; ,.,x- -> '. . • -k :,'- :- :,> '- -> ,'-> -:-"-:% . -;-- ,

.*

inJ

Table of Contents

P refa ce ...ii

L ist o f F ig u res .. v

L ist o f T a b les ... v i

A b stra ct ... v ii

1. In tro d u ctio n .. I-1

1.1. B ack g ro u n d .. I-1

1.2 . P rob lem S tatem en t .. 1-1

1.3 Hardware Description Languages (IIDLs) ... 1-2

1.4 VIISIC Hardware Description Language (VIIDL) .. I-4

1.5 A ssu m p tio ns .. 1-6 O

1.6 Materials and Equipment .. 1-6

1 .7 A p p ro ach .. 1-6

2 . S y stem D esign .. 2-1

2 .1 O b jectiv es 2-1 p

2.2 VIDL Subset Simulator .. 2-1 %

2.3 VIIDI, Intermediate Form 2-2

2.4 Interactive Capability,2

2.5 Implementation Requirements .. 2-3

2.6 Performance Requirements ... 2-3 A

2.7 Simulation Methodology .. 2-6

3 . D etailed D esign .. 3-1

3.1 Build Package ... 3-1

3.2 Build Package Example ... 3-2

3 .3 S im u la te P ack ag e .. 3-11

4 . R esu lts an d A n alysisI-I
4.1 Simulator Design .. -1

4.2 Simulator Operation .. .1-2

4 .3 P rogra m R esu lts1-3

4.4 Performance Requirements ... 1-6

4.5 Summary .. 1-10

5. Conclusions and Recommendations .. 5-1

5 .1 C o nclusions 5-1

5.2 Recommendations 5-1.

5.3 Summary 5-2 -,,

Appendix A Simulator Test Suite-

Appendix B Full Adder VII)l, Description I-I 11,,

Appendix C Full Adder VIA File .. ('-I

iii",
% Z

% p"4

|4

Appendix D Full Adder C Files Generated D--.....................................

Appendix E Ring Oscillator VhIDL Description!'-I

B ib lio g ra p h y .. I II -1

V IT A .. V IT A - I

',

N

.. :

D'p

List of Figures

Figure 2-1. Complexity of VIISIC Class Designs2-4

Figure 2-2. Precompiled vs. Interpretive Simulator Comparison 2-5
Figure 2-3. System Level SAD T Diagram ... 2-7
Figure 2-1. Build Package SAD T D iagram ... 2-8

Figure 2-5. Sim ulate Package SADT Diagram .. 2-9

Figure 3-1. VIA O peration T able Structure .. 3-7

F igure 3-2. D river Structure .. . 3-1I .

Figure 3-3. Signal Structure .. . 3-13
Figure 3-4. Projected Output Waveform Element 3-13

F igure 3-5. Process T able E ntry 3-1.1
Figure 3-6. Event List for a Given Simulation Time ... 3-16

Figure 3-7. Time Queue ... 3-16

Figure 3-8. T im e Q ueue and Event List .. 3-17
Figure 4-1. Full A dder Sim ulation R esults .. 4 1 .

Figure 4-2. R ing O scillator R esults ... 4-2

vI

"..

.

-'-

;"-.
• --

v ' -
I5

Ib

S I-1

t
'p-: "-S .~t'p .

~ *~ % ~~ ~ ~ :~\-~- ~ V92ZK :~cZ:CK....x~/'.. -?

List of Tables",

Table 4-1. Operators Supported 41-4

Table 4-2. Sequential Statements Supported -4

Table .1-3. Concurrent Statements Supported1-5

Table 4-4. Computer Resource Requirements 4-6

:?..-

vi 4

, .4

Iq

p

Abstract
•,1*,

This thesis effort investigated and implemented a UNIX-based VIIDL subset interactive

simulator. The simulator was written in the C programming language. The simulator is capable of .r,: %

handling many of the VHDL operators, sequential assignment statements, and concurrent statcments.

Although the simulator is a subset, the data structures were designed to incorporate the features of the

complete VHDL version 7.2.

De

V

I%.

I•.

.,"

4,'

vii ..
"'
A. "

LI
.. '2

A UNIX-based Interactive
VHDL Simulator %

1. Introduction

1.1. Background

The Very-High-Speed Integrated Circuits (VHSIC) Hardware Description Language (VIHDL),

developed for the Department of Defense (DoD) by the Air Force Wright Aeronautical Laboratories

(AFWAL), is an extremely important vehicle for the development and insertion of VttSIC technology

in the 1990's (Dewey and Gadient, 86). Based on the programming language Ada, VHDL consists of

structural building blocks used to design complex VLSI systems. Some of the features of VHDL

include the ability to define memoried and combinatorial elements, create user-defined types, and

describe design hierarchies. Although other hardware description languages exist, none match

VIIDL's total capabilities when working with VLSI and VHSIC circuits (Waxman, 86). The AFIT

VHDL Environment (AVE) (Carter et.al., 87) is an advanced prototype UNIX-based VIIDL

programming and design environment that was begun in 1986. The VH-DL Simulator, a prototype

kernel of which was developed by MAJ William Lynch (Lynch, 86), is a critical link in the AVE.

1.2. Problem Statement

Universities are unable to investigate the capabilities of VItDL due to a lack of acceptable

software tools (analyzers, simulators, etc.). Since many universities use the UNIX operating system,

a VHIDL tool set that operates under UNIX is necessary if VllDL is to be utilized by the academic

community.

This project is to develop MAJ Lynch's VHDL Simulator kernel into a version 7.2 VIIDL

subset Simulator. This VIIDL Simulator, in conjunclion with the UNIX-based Vlll)l. Analycr

F. ". "e

'p-i . :.

(Bratton, 87) provides the academic community with the necessary tools to investigate the capabilities

of VHDL. The simulator is written in the C programming language (Kernighan and Ritchie, 78),

capable of running on VAX-i 1/785 and ELXSI 6400 computers under the AT&T System V and 4.2

and 4.3 bsd UNIX operating systems. Input is in VHDL Intermediate Access (VIA) format, produced

by Capt Randolph Bratton's VHDL Analyzer. Interface with the analyzer is critical, since the

simulator requires specific information from the VHDL description. The simulator's operation was

validated, analyzed, and simulation speed was examined.

1.3. Hardware Description Languages

1.3.1. Definition and Requirements
-4•

Formally, an IIDL is defined as a language for describing, documenting, simulating and

synthesizing digital systems with the aid of a computer (Su, 77). The origin of hardware description

languages (HDLs) to describe digital system designs date back to 1939, with Shannon's work on

switching circuits (Chu, 74). Interest in HDLs has grown, and a myriad of languages has been

(O developed to describe computer systems. HDLs allow the designer to express asynchronous

operations, parallel control, and the architecture of a hardware system in a precise, yet concise

description (Barbacci, 85). %

An HDL must be able to express the sequence of actions and structure of the components

nf..ed to implement those actions -- e.g., flip-flops, memory units, ALUs, and bus structures. It must

be able to describe all of these, whatever its complexity (Su, 77).

1.3.2. Need for IIDLs

Due to the rapid advancement of semiconductor device fabrication technology, the

performance and speed realized from an integrated circuit has increased substantially. As circuit

density increased, design details could no longer be conveyed in circuit diagrams (Lipovski, 77).

Although the type number and pin connections were represented, circuit diagrams did not reveal ,",

essential design details such as internal functions being performed, indications of legal and illegal

connections, and principles of operation (Lipovski, 77). The overwhelming complexity and dcnsity

1-2

* '.%*' '.' S .o

of circuit designs necessitated the use of design teams in the development of VLSI technology. The

design team concept, however, was accompanied with the problem of communicating design N

information concisely, accurately, and efficiently (Lynch, 86).

In order to alleviate communication problems, circuit designers incorporated the use of I IDLs p
!'p

into the design process. The need for IHDLs was recognized by Yaohan Chu in 1974. When asked,
p

"Why do we need computer hardware description languages?" Chu offered the following reasons

(Chu, 74):

* they serve as a means of communication among design engineers;

* they permit precise yet concise descriptions;

* they provide documentation;

* they are amenable to simulation on a computer; p

* they aid greatly in computer aided design (CAD).

By utilizing HDLs, hardware design engineers have a means of communicating their designs in•A

4? a precise, self-documenting language. These features contribute to hardware design reusability and P

maintainability in digital systems. When HDLs are simulated on a computer and utilized in a CAD

environment, both design time and design costs are reduced substantially.

A hardware simulator permits its designer to simulate, usually before construction, hardware I

designs (Lynch, 86). The designer can create a software model for a hardware system, exercise the

model with a set of input stimuli, and observe the output. Logic simulation is especially valuable for

VHSIC designs since design errors are very costly and breadboarding is impractical (d'Abreu, 85). 1

1.3.3. Problems with IIDLs -%

The recognition of the ability of 1DLs has led to the proliferation of weak, ineffectual .%,

languages. When a simulator was written, the designer felt entitled to write his own IIDL; he felt that

it would be easier to design a new TIDL than to adapt existing ones to his application (Lipovski, 77). . .,

In describing the state of IIDLs, Lipovski says, "We seem to he confounded in our own Tower of

Babel -- everybody is talking a different language but nobxly is communicaling." (Lipovski, 77). In

1-3

,

- - S-C .*

"",

a survey of HDLs, Su concluded that although many languages exist, none have been widely utilized

to design, describe, or document digital systems (Su, 74). S

The problem has been that although I-IDLs existed for specific applications, none were

satisfactory over the range required for a large hardware design project (Lynch, 86). In 1977, Stephen

Su suggested the use of a common HDL for circuit designers (Barbacci, 85). In 1981, the Departnent

of Defense acknowledged the need for an HDL for Very-Iligh-Speed Integrated Circuits (VIiSIC)

class designs (Shahdad, 85). The DoD hoped to establish the VIISIC Hardware Description Language

(VHDL) as the standard language for VItSIC designs.
S

1.4. VIISIC Hardware Description Language (V11DL)

1.4.1. Background

In the 1970s, the DoD initiated the development of the Ada programming language in reaction

to the crisis in software development. Requirements for the Ada programming language were that it

incorporate software engineering concepts such as structured programming, information hiding, and

data abstraction (Booch, 87).

When analyzing the problem of how to effectively communicate information on VIISIC

designs consisting of over 250,000 transistors, the DoD found the basic constructs implemented in

Ada were consistent with the requirements for a new IIDL (Lynch, 86).

1.4.2. Development and Definition of V11DL
-V

In 1981, the Institute for Defense Analyses (IDA) was tasked with the requirements analysis for

the VHSIC Hardware Description Language (Aylor, 86). In the process of developing VIIDL,

existing HDLs and their environments were analyzed, extracting the major advantages of each; this

insured that no existing HDL capabilities were overlooked in developing VHDL (Aylor, 86). In

1982, the VHDL program organization was formulated; in 1983, the VHDL program was launched r-

when the team of Intermetrics, IBM, and Texas Instruments was awarded the contract to design and

implement the VIlDL support environment software (Dewey, 86; Gilman, 86). Intrmetrics, the

1-4 ', *I"

S °

,€'.° ,d d ." " " C ' " ,', " ' " " " " ¢"= . ,. , . " % " . ,% 't • J"• " " €"" " " , " r " " • 4 " .

I

prime contractor for the program, was tasked with designing the language and establishing the "

support environment architecture (Gilman, 86). IP

1.4.3. Goals and Attributes of VIIDL

The specific goals of VHDL are to reduce circuit design time and insert VHSIC technology into

military systems (Dewey, 86). More generally, VHDL strives to meet the HDL goals noted earlier

(precise communication, documentation, simulation, and CAD applications). The primary goal of the

DoD is to establish VHDL as a standard design automation interface tool and documentation agent

(Dewey, 86). This would greatly simplify complex system design and facilitate VIISIC insertion into I

electronic systems.

1.4.4. VIIDL in a VMS Environment

The VIIDL tool set developed by Intermetrics was written in Ada, to be operated in a VAX-

VMS environment. The Air Force Institute of Technology (AFIT) was selected as a site for beta-

testing the VMS-based VIIDL tools. The VHDL Analyzer and Simulator were ported onto AFIT's

VMS VAX-I 1/785 (Carter, 87). The installation procedure was complicated due to inadequate

installation instructions and some file protection problems. Furthermore, it was later discovered that

the software contained version dependencies that interfered with the proper operation of the VIIDL

tools when later releases were installed (Carter, 87). 0

1.4.5. AFIT V11DL Environment (AVE)

In recognition of the deficiencies of the Ada/VMS-based VHDL tool set implementation, the

AFIT VIHDL environment (AVE) was established in 1986. The AVE is a prototype UNIX-based -"

VHDL programming and design environment in which UNIX-based software tools are developed in

the C programming language. The key attribute of software developed in C is its portability; that is,

the capability of installing it on different UNIX-based computer systems with little or no

modifications to the software. In 1986 AFIT thesis efforts, a prototype VIIDL Analyzer

(Frauenfelder, 86) and a prototype VIIDL Simulator (Lynch, 86) were developed. The validalion

benchmarks of these prototype versions offer proof of the UNIX-based lesign concept (Fraucnfchlcr,

1-5

* ,,~. (- * W - "A '-.. .-.. ~. , ~4.. 44*, . -4 ..-,..---' . -,,. .. ,-~ I.-._.,.'-

86; Lynch, 86). A UNIX-based environment is favored because it is the operating system utilized by

most universities, and because of the inherent portability of C software.

To facilitate the insertion of VHSIC technology into university programs and government

systems, the prototype Analyzer and Simulator had to be developed into VI IDL CAD tools.

1.5. Assumptions

Completion of this thesis assumes a mapping of source code to a VtlDL intermediate fornat. A

working analyzer is not essential, as the intermediate files could be synthesized using a text editor if

necessary.

1.6. Materials

e VHDL Users' Guide and Reference Manual (Intermetrics, 85a, Intermetrics, 85c)

* C Reference (Kernighan and Ritchie, 78)

* A UNIX-based computer with a C compiler; (An ELXSI 6400 super-minicomputer and

Sun-3 workstation was used to meet this requirement.)

1.7. Approach

The overall design philosophy in this research effort was to incrementally implement language

features of VHtDL into the simulator. Since the signal assignment was considered the most

fundamental behavioral statement, it was the first to be implemented. As features of the language

were implemented, tested, and validated for the Analyzer and Simulator, Beta versions were released.

Successive Beta versions incorporated additional language features, always maintaining end-to-end

throughput from VIIDL source to simulation output.

In the next chapter, the system design philosophy is discussed; the features of the simulator are

introduced, and the design approach and methodology are described, and the notion of a pre-compiled

simulator is justified. Chapter 3 is devoted to a discussion of the steps involved in creating

compilable C code from the intermediate form, and an explanation of data structures used for

simulation. The chapter is concluded by conceptually exercising a simulation for a VIIDI.

1-6
C

.5 - % ,,

,ip.

descripion, showing the intermediate results in the simulation process. In chapter 4, the simulator is

analyzed by listing the features of VHDL that were implemented in the simulator, the execution times

for various phases in the simulation, size of files involved, and a comparison of simulation reports

obtained from the VMS version and the UNIX version. Finally, in chapter 5, recommendations for

future research in the area of VHDL simulation is discussed.

%%

.1.

.5

I- I

I. 1

I=

,'

2. System Design

For the subset simulator to be deemed complete, it must meet performance requirements

defined and described in this chapter. The performance requirements state the subset of the language

the simulator must be capable of simulating, the simulator's user interface, its operating environment, U

and execution time and file size requirements.

2.1. Objectives"%

The primary objective of this research effort was to develop a subset VHDL simulator in the C

programming language capable of running under UNIX; additionally, the simulator should be fast,

have modest disk space requirements, and be easy to use. The simulator must read an intermediate

form of VHDL and an optional input vector file.

2.2. VIIDL Subset Simulator

For the UNIX-based simulator to be considered complete, it must meet the following criteria:

. * It should correctly simulate the signal assignment, enable, disable, assertion, if, and case

sequential statements; and the process, concurrent assertion, conditional signal

assignment, and selected signal assignment concurrent statements, as described in the

Language Reference Manual (Intermetrics, 85a).

* The simulator must have a user interface that includes an interactive mode which allow

the user to set simulation breakpoints and view signal values or change signal values at

breakpoints. The simulator must allow the user to specify an input stimuli file, allowing

the user to provide input vectors for signals. .'

* It should complete the simulation, from intermediate form to output report generation, in

less CPU time than its VMS-based counterpart. The disk space required for simulation

under UNIX must also be less than that required by the VMS version.

Obtaining objective comparisons for execution time may be difficult due to differcuces in

CPUs on available VMS and INIX machines. Disk space, however, is absoluite, and can be casily I

2-1

% I "

.

compared. From a software engineering perspective, the simulator must adhere to the principles of 0.

structured programming (modularity, module independence, etc.) and proper code documentation

(Pressman, 87).

These software engineering principles are fully supported in the design of the simulator. The

overall simulator is divided into two packages, the Build package and the Simulate package, each

performing a distinct operation. Each of these packages is implemented by decomposition into

hierarchically designed functions. Each function is documented with a header which describes what

the function does, and explains the purpose of the parameters passed and local variables.

2.3. VItDL Intermediate Form

VHDL Intermediate Access (VIA), produced by Capt Bratton's VIlDL Analyzer (Bratton, 87),

serves as the intermediate form for the simulator. VIA provides the complete design description in

the form of a syntax tree. Simulation from VIA is more manageable since the VIlDL source has been

syntactically and semantically verified, and has been reorganized into a tree structure that is easily .,

parsed by the simulator. Additionally, many of the control structures (if-then-else, case, loop) are ,

easily mapped from the syntax tree format of VIA to C code.

2.4. Interactive Capability V

The simulator must provide interactive features that allow the user to provide input stimuli, set

breakpoints, view signal values, change signal values, and terminate the simulation. Each of these

features are described below. ".

2.4.1. Input Vector File

The simulator must provide the user with the ability to change the values of input stimuli. The

input vector file permits the user to specify signals that are to be set, the time they are to be affected,

and the value the signal will assume. For example, the user should be able to specify that signal A is

set to '0' at time Ons, 'I' at time 5ns, '0' at time 15ns, etc. The input vector file is optional, and the

user can specify any number of vectors in the file.

2-2
'-.;''""4, - . ,i'.. ."." ." . ."" '". - :-. -J.-- . -... ,.- -;-.-.-'''--,{' ' . '". ' "- - "-"."•"- -

2.4.2. Breakpoints

The user should be able to set breakpoints in the simulation. When a breakpoint is specified, the

simulation proceeds until the specified time is reached. At that time simulation is suspended,

allowing the user the option of viewing intermediate values, altering values, or terminating the

simulation. %

2.4.3. View Signal Values

This function permits the user to view intermediate signal values during the course of a

simulation. Following a breakpoint selection, the user can specify which signal values should be ,

displayed. The signal values will be displayed to the console, and the user can display more signal

values, continue the simulation, or terminate the simulation.

2.4.4. Change Signal Values

This function permits the user to alter the course of a simulation by forcing changes on one or

more signal values by specifying a signal name followed by the value it is to assume. The user can

repeat this function for as many signals as desired.

2.4.5. Terminate Simulation

This feature allows the user to abort a simulation without further processing. S,. '

2.5. Implementation Requirements

The simulator is implemented in the C programming language, to be operated under the AT&T "
System V and UNIX bsd 4.3 operating system on an ELXSI 6400, DEC VAX 11/785, and a SUN

workstation.

2.6. Performance Requirements

Since the primary objective of the VIIDL simulator is to simulate VIISIC class circuits, its "

memory requiremenls and execution speed were given particular attention when designing the dala

structures. Figure 2-1 shows the difference between the VIISIC class design and the less comuplex

2,-.

2-3 ..

°* .

%

designs solved by Engineering Analysis Simulation Systems (Intermetrics, 84). The larger number of

gates being simulated in VHSIC class designs (up to 1OOK) usually require vast amounts of memory

and have very long execution times on large minicomputers and mainframe computers. The vast

memory requirements and long execution times stifle productivity and especially impact users in a

timesharing environment.

Number of
Patterns

210k¢ VHSII

Design Verification
Simulation

Systems

10k

Engineering Analysis
Simulation Systems

Number
I of Gates

50k I .k

Figure 2-1. Complexity of VIISIC Class Designs.

The event-driven methodology used in this simulator is designed to help alleviate the vast

memory requirements and long execution times inherent in VIISIC class simulation. Figuire 2-2

shows the difference in efficiency between interpretive and precompiled simulators. Interpretive

simulators are typically more efficient to set tip, but less efficient as the number of test patterns

increases into the VH-SIC realm of designs (Intermetrics, 84).
%"

2-4

• Sl .

0

CPUU Tim

Setup

Innterpretive

Setup

VIISIC Class Designs Test Paticriis

0*

2-5%

% 0

.

2.7. Simulation Methodology

2.7.1. Approach

The two classes of simulators are compiler-driven and table-driven event-directed (or table-

driven). Earlier simulators were compiler-driven, while the more modem ones are event-driven

(d'Abreu, 85).

In digital circuits, usually only 10 to 15 percent of the circuit is active at any point in time

(d'Abreu, 85). This makes it inefficient to simulate all elements. Instead, an event-driven simulator ..

is based on changes in the state of signals. When a signal is scheduled to change value at some future

time, both it's projected value and its scheduled time are maintained in linked structures called event

lists and time queues (d'Abreu, 85). :5%

This VHDL simulator is an event-driven simulator that maintains both a time queue and event •

lists. The data structures used to meet this requirement are described in detail in the next chapter.

2.7.2. Overall System Design

In the system design phase, an approach similar to the Structured Analysis and Design S,.,.

Technique (SADT) (Pressman, 87) was used to develop the software system. Using SADT-like

diagrams, the system could be viewed from a very high level of abstraction, exposing data

transformation and data flow. SADT-like diagrams were prepared for the overall system, the Build 0

package and the Simulator package. At these high levels of abstraction, SADTs proved helpful in

perceiving the interaction between the problem space and the solution space. At lower levels in ie

design, SADT-like diagrams were not as effective at describing and documenting modules; instead

algorithmic descriptions were used.

The overall simulation execution flow is described below:

" Read VIA from file into internal structure (array).

" Parse the symbol table section of VIA, creating symbol table ir memory.

" Parse the operation table section of VIA, starting from the highest level block stzatemCt.,

As the operation table is parsed, liles containing execitable C coKle are generated. - .

2.6 %

'l

,.--

. ~... .* p.~ ~~ ~'p~*'.'p I.#Cir''~. - p ,~~ 4" ~ 5" ',~.P5 P 5

" The C modules just created are compiled and linked with the kernel of the simulator and

the run-time library. it

" The simulator is executed.

" Tailored reports can be generated. ,

The SADT-like diagram used to describe and document the simulator at the highest level of

abstraction is depicted in Figure 2-3. The simulator obtains control information from the command

line, via command line options, and from user responses, when operated in the interactive mode. The

simulator obtains input from VIA, which describes the VHDL description, and from an optional

vector file. Based on the inputs and control specifications, an output file that describes the behavior

of the VIIDL description is produced. If there were any errors in the input or in the user specified

control, an appropriate message is displayed to the terminal.
S

Command Line Interactive ResponsesI I

VIA Output
VHDLle

Vector Simulator Error
Mi F sgs?

%

.,

Figure 2-3. System Level SADT Diagram.

2-7 -[

2.1

%

2.7.3. Build Package

The Build package reads VIA and creates the necessary C code for creating the static data

structures and functions necessary for simulation. The SADT-like diagram used to design the Build

package of the simulator is depicted in Figure 2-4. The user must specify the name of the VIA file
J-

on the command line. If the file does not exist, an appropriate message is displayed to the terminal,

otherwise the specified VIA file is read, and C code that models the VHDL description is generated.

'°''

Command Interactive 0
Line Responses

%. ,.1

C code modelling
VHDL description

BuildVIA Package

Error
Msgs -

'

Figure 2-4. Build Package SADT Diagram.

The Build package creates the static data structures and the behavioral functions by performing

the following: :. -.

" Read VIA file into an internal structure (array).

0
" Parse the symbol table section of VIA for all signals and variables declared.

" Parse the operation table section of VIA, starting from the highest level block statement.

As the operation table is parsed, the C functions describing the description's behavior are

incrementally generated.

2-8

S

.,: .. -1
* *'p ~ .J,* ,'p ,%"

, ..

,.5,

In the next chapter, the sequence of steps described above are discussed in more detail, and

illustrated by applying algorithm for the Build package to a VHDL description. The structure of the

operation table is illustrated in the example, as well as the content of the C files generated.

2.7.4. Simulate Package

The Simulate package begins by compiling the C function(s) created in the Build package and

linking them with the kernel of the simulator. All information from VIA is contained in the C

functions, so the Simulate package does not access VIA.

The design of the Simulate package began by describing the data flow and control in a SADT- I

like diagram, which is depicted in Figure 2-5. When executing the Simulate package, the user may

specify the name of an output file on the command line, otherwise a default name is used. During the

course of a simulation, the user has the opportunity to set breakpoints, view intermediate results, or

change signal values during the course of the simulation. When the Simulate package begins

execution, the C code that models the VHDL description is compiled and linked with the kernel of the

simulator. The simulator is executed, and an output file is created. If there were any errors in the

simulation, the user will be notified by appropriate messages to the terminal.

Command Interactive
Line Responses

C code modelling I Otpu~FileVHIDL Description Fileu

Simulate
Package Error

N.sgs

Vector file

Figure 2-5. Simulate Package SADT Diagram. ,

I

2-9

- % %

'

U-'

The Simulate package is then executed, exercising the following cycle adapted from the VHDL

tutorial:

1. If the next vector time is equal to the current simulation time, the value of a-.

each signal in the input vector is read sequentially. If the value of a signal in

the input vector is different from the current value of the signal, the signal --

value is updated instantaneously and all processes sensitive to that vector are

marked for execution. If the value of the signal in the input vector is the

same as the current value of the signal, nothing happens. Signal values in the

input vector are read and evaluated until the input vector has been exhausted.

2. If the current simulation time is the same as the first record in the time

queue, all transactions in the event list for this time are evaluated. If the

scheduled value is different from the current value of the signal, all ,-Z

processes sensitive to that signal are marked for execution. If the scheduled

signal value is the same as the current value of the signal, nothing happens.

Transactions in the event list for the current time are evaluated until the

eve list is empty.

3. All marked processes in the process table are executed, possibly posting

transactions to signals' projected output waveforms.
41

4. Time advances. The global simulation time advances until the user

specified termination time is reached or the time queue is empty.
to

I

2-10

a1 -. ~ * ~ a p 4 * -a ,U

3. Detailed Design

In the previous chapter, the requirements for the simulator were described, followed by a

system level view of the Build and Simulate packages' functionality. In this chapter, the design of

the Build and Simulate packages will be discussed in more detail with examples where appropriate;

unique implementations of algorithms and data structures are emphasized in this discussion.

3.1. Build Package

The philosophy of the Build package is to read the intermediate form once and create C code

that models the behavior of the VIIDL description, as well as declarations and assignments for the

static data structures in the simulation. The C code created in the Build package can then be

compiled and linked with a simulator kernel and runtime library for execution.

The Build package begins by reading the VIA file into an array. As mentioned earlier, VIA is

maintained as series of records that can be conceptually linked, forming a binary tree consisting of

first and next nodes. When viewed as an array of records, each record has a first and a next field,

which are the indices of other records in the array. The records in the array can alternately be viewed

as nodes of a tree, where the first and next fields are viewed as pointers to other nodes. For a

thorough explanation of the VIA format and contents, the reader is encouraged to read Bratton's work

on the VIIDL analyzer (Bratton, 87).

The tree is recursively traversed and evaluated, starting from the highest level BLOCK

statement. As nodes are encountered, they are evaluated, and the C code modeling the VlIDL

description is incrementally generated.

The philosophy of the Build package provides runtime efficiency because VIA is read from a

file into an internal representation, which is traversed in one pass, building C code that models the

behavior of the VIIDL description represented in VIA. By creating C code, elements in the V1H[DL

description (signals, drivers, variables, etc.) can be represented as discrete elements.

3-1

.1*

If the elements in the VHDL description were not represented as discrete records, they would have to .0

be represented in a linked list of records, or as an array of records. Implementing the data structure as

a linked list would increase search times, while an array implementation would not be memory

efficient.

3.2. Build Package Example

In this section, the execution of the Build Package is examined for the example of a three input

XOR signal assignment statement. First the VHDL description is presented, followed by the VIA file

generated after running the analyzer. The VIA format is presented in its untouched form, a formattedI

form, and the equivalent operation table in a visual tree structure. Finally, the C code gencrated by

the Build package, and a pictorial representation of the static data structures needed for the simulator "

are discussed. p

3.2.1. VIIDL Description

The VHDL description for the three input XOR signal assignment statement is merely a
-A'

process statement containing a sequential signal assignment statement. The VHDL description used .

in this example is given below.

entity XOR3
I

(X,Y: in BIT; -- one-bit addends
Z: in BIT; -- carry in
F: out BIT) -- one-bit sum

is
end XOR3;

architecture DATA FLOW IMPL of XOR3 is

BLOCK_1: block

begin
process (X, Y, Z) p

begin
F <= X xor Y xor Z after 41 ns;
end process;

end block BLOCK_1;

end DATA FLOW IMPL;

3-2

ee -
*Mza e-.,

3.2.2. VIA Representation

Depicted below is the untouched VIA file output by the analyzer. The first four entries in VIA •

indicate how many design units, symbol table, operation table, and string table entries there are in the
% ,

VHDL description. In this example, there is I string table entry, 32 symbol table entries, 19

operation table entries, and 3 design units.

1 32 19 3
0 ANY 0 0 0 0 -1 -1 -1 -1 -1
1 STANDARD 3 4 0 1 -1 -1 -1 -1 -1
2 INTEGER 2 1 0 1 -2147483648 2147483647 2 -1 -1
3 CHARACTER 2 2 0 1 128 0 127 -1 -1
4 BIT 2 2 0 1 2 0 1 -1 -1
5 BOOLEAN 2 2 0 1 2 0 1 -1 -1
6 FALSE 1 3 0 1 5 0 -1 -17
7 TRUE 1 3 0 1 5 1 -1 -1 -1
8 SEVERITY LEVEL 2 2 0 1 4 0 3 -1 -1
9 NOTE 1 3-0 1 8 0 -1 -1 10
10 WARNING 1 3 0 1 8 1 -1 -1 11
11 ERROR 1 3 0 1 8 2 -1 -1 12
12 FAILURE 1 3 0 1 8 3 -1 -1 -1
13 NS 1 3 0 1 14 1 -1 -1 15

I, 14 TIME 2 5 0 1 0 2147483647 8 13 -1 •
15 US 1 3 0 1 14 1000 -1 -1 16
16 MS 1 3 0 1 14 1000000 -1 -1 17
17 S 1 3 0 1 14 1000000000 -1 -1 -1
18 0 1 3 0 1 4 0 -1 -1 19
19 1 1 3 0 1 4 1 -1 -1 -1
20 REAL 2 6 0 1 -2147483648 2147483647 20 -1 -1

21 NATURAL 2 1 0 1 0 2147483647 2 -1 -1 0

22 POSITIVE 2 1 0 1 1 2147483647 2 -1 -1
23 STRING 2 3 0 1 22 3 1 0 -1
24 BIT VECTOR 2 3 0 1 21 4 0 0 -1
25 XOR3 3 1 0 25 29 -1 -1 -1 -1
26 Y 1 1 9 25 4 -1 -1 -1 27
27 X 1 1 9 25 4 -1 -1 -1 -1 •
28 z 1 1 9 25 4 -1 -1 -1 26
29 F 1 1 17 25 4 -1 -1 -1 28
30 DATAFLOWIMPL 3 2 0 30 25 18 -1 -1 -1
31 BLOCK 1 1 4 0 31 18 -1 -1 -1 -1
0 0 1 -1 -1 -1 -1 -1
1 9 16 -1 5 7 -1 -1
2 9 17 -1 4 27 4 -1
3 9 17 -1 4 26 -1 -1
4 9 17 -1 4 28 3 -1
5 15 17 -1 -1 2 15 -1 .1
6 9 19 -1 4 29 14 -1
7 9 19 -1 4 27 8 -1
8 9 19 -1 4 26 -1 -1 0

3-.

* 9 367 19 -1 4 7 10 -1
A .. r 10 9 19 -1 4 28 -1 -1

11 367 19 -1 4 9 -1 -1
12 11 19 -1 2 -1 -1 41
13 291 19 -1 2 12 11 -1
14 13 19 -1 -1 13 -1 -1

*15 4 19 -1 -1 6 -1 -1
*16 345 20 -1 -1 5 -1 -1
*17 12 22 -1 -1 1 16 -1

18 301 22 31 -1 17 -1 -1

3.2.3. Formatted VIA

The VIA format presented in the previous section is not particularly easy to read. Therefore, a

utility called rmtvia, for format VIA, was developed with thc analyzer software package (liratton,
WI

87). The fmtvia program reads a VIA file and produces a formatted VIA file with descriptive labels

for each of the fields, and replaces numbered field descriptions with symbolic names. When the VIA

file of the previous section was run through fmtvia, the following output was produced. The listing

below contains the same information as the VIA file of the previous section, just in a more readable

format.

AFIT VHDL VIA-to-Text Utility Revision: 2.0
string size = 1; symbol table entries = 32 5

op table entries = 19; design units = 3
0 name= -ANY__ scope ref=0 ANYCLASS ANYUNIT
1 name=STANDARD scope ref=1 design unit package

package declarations=-1
2 name=INTEGER scope ref=1 type integer range min=-2147483648

max=2147483647 typeref=2
3 name=CHARACTER scope ref~1 type enumeration #_of-const=12'8

first=0 last=127
4 name=BIT scope ref=1 type enumeration #_of const=2 first=0 last=l
5 name=BOOLEAN scope ref=1 type enumeration #_of const=2 first=0 .

last=1 N-
6 name=FALSE scope_ref=1 object constant typeref=5 value=0

initialize-l next-7
7 name=TRUE scope ref=1 object constant typeref=5 value=1

initialize=-1 next=-l
8 name=SEVERITY_LEVEL scope_refl type enumeration #_of const=4

first=0 last=3

name=NOTE scope_ref=1 object constant typeref 8 value' O

10 name=WARNING scope ref=l object constant typeref=-8 v~ii;u,-i

intilze5 net1

5'...-.3-4

11 name=ERROR scope ref=l object constant typeref=8 valuc=-2
initialize--l next=12

12 name=FAILURE scope ref=l object constant typeref=8 value=3

1name=NS scope ref=l object constant typeref=14 value=1
initialize=-l next=15

4 14 name=TIME scope_ref~l type physical #_of units -8 min=C
max=2147483647 baseref=13

15 name=US scope ref=l object constant typeref=14 value 1OOO
initialize=-l next=16I

16 name=MS scope ref=l object constant typeref=14
value=1000000 initialize=-1 next=17

17 name=S scope ref=l object constant typeref=14
value=1000000000 initialize=-1 next=-l

18 name=0 scope ref~l object constant typeref=4 value=O
initialize=-l next=19

19 name=1 scope ref=l object constant typeref=4 value=l

20 name=REAL scope_ref=l type real-range min=-2147483648
max=2l47483647 typeref=20

21 name=NATURAL scope ref~l type integer_range min=O
max=2147483647 typeref=2 '

22 name=POSITIVE scope ref-4 type integer range min~l
max=2147483647 typeref=2

23 name=STRING scope_ref=1 type array indexref=22
elementref=3 lo bound=1 hi bound=<>

24 name=BITVECTOR scope ref=1 type array indexref=21
elernentref=4 lo -bound=0 hi-bound=<>

25 name=XOR3 scope_ref=25 design_unit interface port=29
generic=-1 interface declarations=-1 directives=-l

26 name=Y scope ref=25 object signal typeref=4 -

initialize=-l next=27 other info=(port mode=in
27 name=X scope ref=25 object signal typeref=4

initialize=-1 next=-l other info=(port mode=in
28 narne=Z scope ref=25 object signal typeref=4

initialize--i next=26 other info=(port mode~in
29 name=F scope ref=25 object signal typeref=4 -

initialize=-l next=28 other info=(port rnode=out
30 name=DATAFLOWIMPL scope ref=30 design unit architecture

interface=25 block=18 N

431 name=BLOCK_-1 scope ref=31 object label first -stmt=18 next=-l
0 NO_-OP line=1 label=-l type=-l first=-l next=-l
1 SYM_-REF line=16 label=-l type=5 symref=7(TRUE) next=-l
2 SYMREF line=17 label=-l type=4 symref-27(X) next=4
3 SYMREF line=17 label=-l type=4 symref=26(Y) next=-1
4 SYMREF line-17 label=-l type=4 syrnref=28(Z) next=3
5 SENSITIVITYLIST line-17 label--i type=-l first=2 next '15
6 SYM_-REF llne=19 label=-1 type=4 symref=29(F) next-14
7 SYM_-REF line=19 label--i type=4 syrnref-27(X) next=8
8 SYM_-REF line=19 label--l type=4 symref=26(Y) next=-l
9 XOR line-19 label=-1 type=4 first=7 next=l0
10 SYM_-REF line=19 label=-l type=4 symref=28(Z) next=-1
11 XOR line=19 label=-l type=4 first -9 next=-l
12 1 _ VALUE line=19 label=-l type="' Vaiue=41 next -1
13 AFTER line=19 label=-l type=2) fir st=12 next=11

3-5

oil4

14 WAVE line=19 label=-I type=-i first=i3 next=-i
S%%15 SIGASSIGN line-19 label--i type--I first-6 next--I

16 PROCESS line-20 label=-i type=-i first=5 next=-1
17 GUARD line=22 label=-i type=-i first=i next=i6
18 BLOCK line=22 label=31 type=-I first=f7 next=-i

.

3.2.4. Operation Table Tree

The simulator reads the unformatted VIA from disk. After reading the header information, the

simulator knows how many design units, symbol table entries, operation table cntries, and string table

entries to expect. The symbol table and operation table are read, line by line, into an array; the string

table entries are read, character by character, into a string. Initially, the symbol table is used for

signal and variable declaration. Once all signals and variables have been declared, the symbol able

is used indirectly by the operation table when signals appear in the VIIDL description. Figure 3-1

shows the operation table visualized as a tree. The operation table tree provides the same infornation

found in the operation table section of VIA. Each node in the operation table is labeled with the node.4-

' number and name of the operation table entry. Note the SYMREF (symbol reference) nodes, which

refer back to the symbol table.

For the three input XOR VHDL description, there is a single BLOCK statement (nod." 18), ,,

which consists of a single process statement (node 16). The process has a sensitivity list of the

symbols X, Y, Z, represented by nodes 2, 3. and 4 respectively. Inside the process statement there is

a signal assignment statement (SIG_ASSIGN, node 15), which assigns to symbol F (node 6;

SYM_REF) the waveform described in the subtree with root at node 14 (WAVE). The ATFR node

specifies after what time the signal F is to take on the expression pointed to by AFFER'sfirst pointer,

in this case, a three input XOR.

3-6

J]

" '". "." .". * ",'." .,'-. ,'% X .'''". ''" , .,.-,;..',..'', * v,-.'... ., .' . . . -.. ". '-.'., -. ''." .".....-. " . "

I8 Block

17 7Guard 16 Process

Sym rf 5 ens ist 1 Sigass.

7 Tu)6Sm e 4Wv

29(F) 13 Ater 1 5-

2 Sy rer 3 Sy re 4 Sm re 9 OR 1 Syn re

27(X 26() 2(Z) 41) 8(Z

~27(X) 26(Y) %8Z (1

-3-

3.2.5. C Functions

The completc C code that is generated by from dhe abow VIIDL description and VIA is listed

here.

#include <stdio.h>
#include "sim stru.h"
mnt *s2 7 pl;
mnt *s2 8 -pl;
int *s2 6 _pl;
int s26_sensproc[2];
int s27_sens-proc[2];
mnt s28_sensproc[2];%
int s29_sensproc[lJ;
Driver *pdl~l]; int *psl[3];

sim-initialize(sig array, pt)
Signal *sigarray[];
Process-table-item pt[];

Signal *Newsigo;
Signal *326;
Signal *s27;
Signal *328;
Signal *s29;
char *strsaveo;
extern mnt s26sensjproc[];
extern mnt s27_sensproc[];
extern mnt s28_sensproct];
extern mnt s29_sensyproc[];
mnt i;
Driver *Newdrvo;
mnt pl6O);
extern Driver *pdl[]; extern mnt *psl[];
Driver *d29;
/* end of declarations *

1* create signals *
s26 -Newsigo; s26->signame = strsave('Y');
s27 = Newsigo; s27->signame = strsave(X);
s28 -Newsigo; s28->signame = strsave("Z");
s29 =Newsigo; s29->signame = strsave("F");
sig_array[O] = s29;
sig-array(l] = s27;
sigarray[2] = s26;
sigarray[3] = s28;
/* declaring drivers *
d29 = Newdrvo; d29->sigptr =s29; s29->ctrv ptr (129;

s26_sensproc[O] 0; /* initially, no sensjt-ivkpr,
s27_sensproc:[0] 0;

3-8

s28_sensproc[O] = 0;
s29_sensyproc[0] = 0; .
s26->sensproc = s26_3ensproc;

s27->sensproc = s27_sensyproc;
s'8->sens-proc =s28_sensproc;
s29->sensyproc = s29_sensproc;
pt[1).procyptr - p16;

/* found a sensitivity list for a process /-

s27_sensproc[++s27_sensproc[0]] = 1;
s27_p1 = &s27_sensproc(s27_sensjProc[0]];

s28_sensproc[++s28_sensproc[0J] = 1;
s28_p1 = &s28_sensprocfs28_-sens -procf0II;

s26_sensproc(++s26_sensproc[0]] = 1;
s26_pl = &s26_sensproc[s26_sens-proc[O];

pdl[O] = d29;
psl[O] =s27->cur val;
psl~l] =s26->cur val; 'S.

psl[2] s28->cur-val;
/* process table filling of driver & signal list P%
pt[O].next =&pt(O];
for(i=l; i<2; i++)
ptl.next =NULL;

pt[l].dlist =pdl; pt~l).slist =psi;

I/* end sim-initialize()*

1* VHDL Process(es) modelled in C code *
p16(dlist,slist) /* process 16 *
Driver *dlist[);
mnt *slist[];

IS

Transact *Newtranso;
extern TIME simtime;

BOOLEAN transport = FALSE;
Transact *newtransl; /*wave*/
newtransl = Newtranso;
newtransl->future time = simtime + 41;
*newtransl.>val = xor(xor(*slist[0], *sljst[l]), *slist[2J);
post trans(dlist[0J, newtransl, transport);

3.2.5.1. Static Data Structures

The C code begins by declaring all Static data structures to be used in the simulation such as

drivers, signals, and the process table entries. All these statements are declared inside a function

3-9 i

% V%
JOW % ',*eZ - e.:S.,

called sim initialize, which is invoked by the kernel of the simulator to set tip the static data
%

structures.&

Each signal encountered in the symbol table is entered into an array, sorted by signal name.

Each driver encountered in the operation table results in creating a driver structure that is doubly

linked to the signal it affects, assuming each signal has only a single driver.

Each signal has a sensitive process list which holds indices into the process table for all

processes sensitive to a signal. The sensitive process list is maintainedl as an array, with the first

element of the array indicating how many processes the signal is sensitive to. In this example, no

I

processes are sensitive to signal s29 (TF"), while s27 ("X"), s26 ("Y"), and s28 ("Z") each have one

process sensigve to it, and its index in the process table is 1. (Th e zeroth position is not used to hold a

process.)

3.2.5.2. Process Functions

In addition to the initialization routine, a C function is generated for each process. In this case,

there is only one process, so there is only one C function. The function generated for the three input

4%,."

exclusive OR example is shown in above; the function is named p16 because it models a process

which happens to be line 16 in the operation table. Names assigned to funcions that model VHDL

processes will always be Pn where n is the line on which the process statement is found in the VIA

file.

Each C function that models a process statement is passed two parameters: an array of pointers

to drivers, and an array of pointers to signal values from the process table. When this process is ,,

I

4%

excued, aeniie toansaction is crtd lodenwt the prcs appropria.The timeoandp aluein is sted to l ..

i . ~ ~~therectednl outpu waeorms so the apropriatne (Irnie. Tefnto eeae o h he nu ".

3-M0

S.,1

% 3.3. Simulate Package

The Simulate package consists of three groups of data structures listed below.

" The driver and signal structures (static data structure) .,

e The process table (static data structure)

* The event lists and time queue (dynamic data structure)

The C code for the first two groups of data structures are generated in the Build package, and ..

are compiled and linked with the kernel of the simulator. The third data structure is dynamically

allocated and freed during the execution of the simulation.

3.3.1. Driver and Signal Structures

The driver structure is necessary to maintain, for each driver, the current value of the driver, a

pointer to its projected output waveforn, and a pointer to the signal that is affected by it. The fields

of the driver structure are shown in Figure 3-2.

Io

To Signal Structure

Signal Pointer

Prey Trans Ptr Next Trans Ptr

Current Value

Transaction Ptr

Figure 3-2. Driver Structure

3-11

S.=.".'."..:.".'- .- 3;' ',.-., -. '..--;. ,- '.-.-,€-:. .. ,- " ' - ' ' ' '.-" '.'.-".-" '..". ".

IPJ.

In a VItDL description, the value of a signal is a function of the value of its drivers

(Intermetrics, 84a). When a driver changes value, its associated signal must be re-evaluated. The

first field depicted in the driver structure (signal pointer) is a pointer to the signal Structure (hat is

affected by a change in the driver value. The previous and next transaction pointers (Prev Trans Ptr

and Next Trans Ptr) will be discussed later as part of the event list. The current value field on the .-

driver structure is a pointer to the value of the driver's value. The value of a driver is not a fixcd data

size. A driver can have a value of type bit, character, integer, real, or bit vector. In order to conserve

memory, all driver values are maintained as pointers to driver values. The final field is a transaction

pointer which maintains a pointer to a driver's projected output waveform. 0

A signal structure is created for each signal in the symbol table. It maintains a pointer to an

array of processes that are sensitive to changes in the signal value. Whenever the signal value

changes, all processes sensitive to it are marked in the process table. The signal structure must also I

maintain a pointer to the current value of the signal, as well as a pointer to a string indicating the

name of the signal. The driver list is a linked list of all drivers that the signal is a fuction of. The
.'. ,.-

linked list of drivers is used by the bus resolution function to determine the value of a signal. The bus S

resolution function field in the signal structure is a pointer to a function that resolves the values of

drivers a signal is sensitive to. In this simulator implementation, since only single drivers are

allowed, the bus resolution function assigns the value of a driver to the signal it drives. Figure 3-3 •

depicts a single signal structure with its relationship to the driver structure and sensitive process list.

3.12.- ..

.. :.:.. - '

3-12 . ' i"

S %.t

Driver List 9- ----- To Driver Structure

Sens Proc Ptr -----To Sensitive Process List

Bus Res Fcn 3-

Curent Value 3-

Signal Name 3-

Figure 3-3. Signal Structure

3.3.2. Projected Output Waveform

Each driver in a simulation maintains a projected output waveform in which future time/value

pairs are maintained. The simulator manages the projected output waveform as a linked list of times

and pointers to values. As previously justified, the projected value of a driver is maintained as a

pointer to accomodate the various data sizes in VHDL. A single element of a drivers' projected

output waveform is depicted in Figure 3-4.

Next

Future Time

Future Value

Figure 3-4. Projected Output Waveform Elcment

.

3-13

\ ~ N ~ : %~.%*'\ .. 2-.'. . *- .- . -...

3.3.3. Process Table

The process table is set up during the Build phase, and consists of all processes in the VttDL

description. A single process table entry is depicted in Figure 3-5. The process table is maintained as

an array of records, each record consisting of the following fields: A pointer to a C function that

simulates the process, an array of drivers that could be affected by the process firing, an array of

signals that are needed to evaluate the process, and a next field used to maintain a list of all marked

processes.

Array of Pointers to Drivers

Array of Pointers to Signal Values

To C-function

Figure 3-5. Process Table Entry

When the Build Phase of simulation is complete, the number of process is in the VltDL

description is known, so the process table can be dimensioned as an array of exact size. Since the

size of the process table is known and since it will never change, dynamic memory allocation (linked

list) is not necessary. Each process table element maintains a pointer to a C function that models the

VItDL process. The order of process execution is dynamic, making it difficult to execute functions

by name since the function name would have to be imbedded in the C code.

3-14

-. ,, .," ." .- .: .. " .. ' . .'..-,.,,' .' -' '...- " ,'..' .. . - . - . - "-- -- : -- ' . -- '- '. . . ' .- - - ,,- ,-.,-, '%, . % .9.,-

By accessing the function by address, processes could be executed indirectly without explicitly .

providing the name of the C function. I)

When a process executes, both input parameters and output parameters must be specificd. The

input parameters are signal values that are needed to evaluate a process. They are provided by r .. ,

e''p

passing the process a list of pointers to signal values. When a process executes, drivers' projected i

output waveforms could be modified as a result of signal assignment statements in the process. By P.

maintaining a linked list of all drivers affected by a process firing, the projected output waveform of

each of these drivers can be accessed. By passing the addresses of signal values and projected otput

waveforms to a process, the simulation can be easily modified to handle component instantiation. -

When multiple instances of a component occur, a process table entry is created for each process, but

references to the same process are resolved by having them all address the same C function, with

each passing different signal values and projected output waveforms. The final field in a process S

table entry is a next field used for marking processes for execution. A linked list, initially null,

contains all processes that have been marked for execution. When a signal value changes, all

processes sensitive to that signal are marked by adding the next field to the linked list of marked I

processes. Before a process is marked for execution, its next field is examined. If it is null, the

process is added to the linked list. If it's not null, then it's already part of the linked list, so nothing is

(lone.

3.3.4. Event Lists and Time Queue

An event list is a doubly-linked structure that maintains all drivers whose first transaction on its

projected output wavcform is scheduled to occur at a given simulation time. For example, if three

drivers had the first transaction on their respective projected output waveforms scheduled to occur

35ns into the simulation, each of these three drivers would be on the same event list. Figure 3-6

depicts this condition. .

3-15
S,' ~

.-. % . . °. - , , - , . , ,- .i.

V'p

Driver Structure Driver Structure Driver Structure
NULL "._-"

Prev Prev Pre v

Next Next Next

NULL

Figure 3-6. Event List for a Given Simulation Time

The time queue is dynamically allocated and freed during simulation. It is maintained as a %

singly linked list of records. Each record contains fields to hold a future simulation time, and he.id

and tail pointers to point to the head and tail of the event list for the given simulation time. If there

were an event list as described in the previous paragraph, then a time queue element would exist for

35ns as shown in Figure 3-7. Figure 3-8 depicts the general case of a time queue and its relationship

to event lists.

Sim_time== 35ns

Next event-ptr

Tail-ptr

Head-ptr

Figure 3-7. Time Queue

S

3-16

%,%
,-S,

,,. ,,, ., ., €,.,, .,,,r ,¢,,€,,,,. € , . - .€ -. .- . ,. ,. ,- .
°

, ." '..,- •..,-. ,, - ., _..,,.,,,- .'.. ,,.. ,.,..'. , ,' .'. -. ,," . .', *..

Sirn time == 35n Sim time

Next-event-ptr 9-Next event-ptr

Tail-pir Tail-ptr

Hlead-ptr Hlead-ptr]

NULL

- rev Next 9

Driver Structure

Driver Structure

Prey Next a-

NULL i

Figure 3-8. Time QueueI and Event List i
3-17

4. Results and Anal'sis

The UNIX-based VItDL simulator was incrementally designed, with the final product

incorporating the major features of the language. This chapter presents the features incorporated into ,w

the simulator and analyzes the final product, comparing it to its VMS-based counterpart where

appropriate. Both the UNIX-based and VMS-based simulators are evaluated for CPU time and disk

storage requirements by simulating VitDL descriptions on each. The merit of the UNIX-based ..

simulator is evaluated based on the language features implemented, its user's interface, and computer

resource requirements.

4.1. Simulator Design

Since the analyzer and simulator were designed concurrently, the overall goal was to have

end-to-end throughput; that is, to have the ability to analyze a VItDL description, produce the

intermediate form (VIA), and simulate, producing an output report.

In order to obtain end-to-end throughput, the simulator was incrementally designed by taking a

subset of VIIDL, designing a prototype for it, and validating its operation. This was first done for

sequential assignment statements. Both the analyzer and simulator were designed to handle

sequential signal assignment statements. The results were validated, and the package was released as

a Beta version. When the sequential assignment statement was validated, the simulator was modified

to handle process statements, which could contain one or more sequential assignment statements.

Between the design capable of simulating sequential signal assignment statements anl the

design capable of simulating process statements, the basic algorithms did not change significantly, hut

the data structures required restructuring to accommodate the new features. Following the

incorporation of process statements into the simulator, neither algorithms nor data structures required %

change, and the additional features were easily incorporated into the design, since the mapping of

, many of the control structures from VIA to C was largely one-to-one.

4-1

"., '%,-.,.-..--.-2.'?.,,2--:-

p n

4.2. Simulator Operation

4.2.1. Command Line Options I
e7TM

Two of the requirements for the simulator are that it have a interactive user's interface, and that

it be relatively easy to use. This section describes the interactive features implemented, which

contribute to the simulator's ease of use. !U.-"

When the user starts a simulation, information is provided via the command line and later from

interactive responses from the user. On the command line, the user is permitted to specify any of the

following options which perform the functions indicated. If an option is not selected, a default value

is used.

," -i simulate in interactive mode.

-o out_file designates the output transaction file.

-s start time selects the simulation start time.

-t term time selects the simulation termination time.

.O -v vectorjfile specifies the name of the input vector file.

By default, simulation is executed in non-interactive mode, the file output.trn is used for the

output transaction file, 0 and Ims are used for the simulation start and termination time respectively,

and no input vector file is used if none is the -v option is not specified.

4.2.2. Interactive Features

If the -i option was specified on the command line, the user exercises the simulation in

interactive mode. In the interactive mode, the user has the option of setting breakpoints, viewing

signal values, changing signal values, setting and locking a signal to a value, unlocking a signal

previously locked, running the simulation to the next breakpoint or until completion, running the

simulation until the next time in the time queue, and terminating the simulation without furher

processing.

When the user starts the simulation in interactive mode, the (lata structures for siinnlation are

initialized, and the user is prompted with the following menu:

4-2

.' .,. ... -..-. -.- .. -. -.-. -.., -. '.... .,-. ... :..-.. . .. , j,, . .,,. ',, ,'€,,' ..

Interactive Simulation Menu

? - Help

b - Set a breakpoint

v - View signal value(s)

c - Change signal value(s)

I - Set and lock a signal to a value

u - Unlock a previously locked signal ..

r - Run the simulation to next breakxoint or completion

n - Run the simulation until time advances

x - Terminate the simulation

The user is assisted through the simulation with sub-menus and is prompted for all required

infoi ation.

4. 4.3. Program Results

4.3.1. Program Size

As described earlier, the UNIX-based VIIDL Simulator consists of a Build package and a

Simulate package. The Build Package consisted of 1,1(X) lines of C source source code, which

produces an executable file 82,250 bytes in size. The Simulate package consist of 1600 lines of C

source code, which produces an executable simulator with a minimum size of 90,700 bytes in size,

depending on the size of the VI IDL description.

4.3.2. Language Features Implemented

The simulator is capable of handling the predefined types BIT, BOOLEAN, INTEGEiR, and

the physical type TIME, as well as enumeration types. The operators that are supported are listed

below in Table 4-1.

4-3

S. %.

J'p,

Operators

logical operators: and, or, nand, nor, xor, not
relational operators: =,=,< <, >, >=
arithmetic operators: +, -, *,/, mod, rem v
miscellaneous operators: *, abs -

Table 4-1. Operators Supported '-

The logical operators and, or, nand, nor, xor, and not are valid for the types BIT and
I..

BOOLEAN. All of the logical operators require two inputs (binary operators), with te exception of

not, which is a unary operator. The standard relational operators are implemented. Each of the D
%

relational operators accepts two operands, which must be of the same type. The relational operation

is performed, and returns a value of type BOOLEAN. The four standard arithmetic operators are

also implemented for integer types, as well as the exponentiation operator and the absolute value

I.0 operator.

Tables 4-2 and 4-3 list the sequential and concurrent statements that are implemented in the

UNIX-based VHDL simulator, as described in the VHDL Language Reference Manual (Intermetrics,

85a).

Sequential Statements

* Signal Assignment Statement
e Enable/Disable Statements

Assertion Statement
e If Statement
9 Case Statement

Table 4-2. Sequential StatencnLs Supported

4-4

" "," " ' " . 4 C.. . C . . , . d . '.2. .

.1'•

Concurrent Statements % .

* Single Block Statement""
e Process Statement i.'

*Concurrent Assertion Statement '
Condiional Signal Assignment Statement%1!

•Selected Signal Assignment Statement

Table 4-3. Concurrent Statements Supported

The operators and sequential and concurrent statements listed above have been tested and-"

validated through analysis and simulation. The VHDL descriptions used to validate the operation of ""

the simulator are included in die VIIDL simulator test suite included in Appendix A. . .

4.3.3. Designs Tested <.

-..,

q .QIn this section, two circuits of practical interest are examined in detail, comparing the UNIX- b

based simulator's performance to the VMS-based simulator's performance. Factors such as time"S'

required to perform intermediate phases in a simulation, disk space requirements, and Simulation"-'

results are examined.""

4.3.3.1. Full Adder Description '

'..,

4.3.3.1.1. UNIX-based Simulator

The V*iDL description for the full adder evaluated is presented in Appendix B. The

description was analyzed with the UNIX-based VitDL analyzer (Bratton, 87), prodcing (e VIA file,"

4-5a

TnApni . h ul ablae 4.onesiulr re Sttmet SAfipprducn h fls eice -

ThApei op ers anid sequentialquand on CUrn saens lisd abovte rshavegbeeniestced nd.'

validate thoug ayisks andsuato. Th e ee Voml dsciinuedt to validate the operlatio of.'

thSimulator parae inue in3 Cthe VeoLdspcimulato test si te cluded in bl Apenix.Th xttlb it-.

-'
In tis ectin, wo crcuts f prctial iterst re eamied i deail comarig th UNX--

base siulatr'sperormace o th VM-baed smultors peforance Fator suc astim

was run in non-interactive mode taking 0.3 CPU seconds. The results just presented are summarizcd

in Table 4-4.

CPU Time (see) File Size (Bytes)
Phase UNIX VMS UNIX VMS

Version Version Version Version
Build 0.5 92.74 538 58,368
Compile 5.3 53.68 22,528 242,176
Sim 0.3 6.44 512 8,192

Table 4-4. Computer Resource Requirements

4.3.3.1.2. VMS-based Simulator

The same VfIDL description was analyzed by the VMS-based simulator, producing the

required intermediate (IVAN) files. The mg command was executed, requiring 92.72 CPU seconds,

producing files requiring 58,368 bytes. The build command of the VMS-based simulator was

exercised, requiring 53.68 CPU seconds, and requiring 242,176 more bytes of disk space to produce

the executable simulator. The simulator was executed, requiring 6.44 CPU seconds, and 8,192 bytes

to store data for report generation. The data for the VMS-based simulation is also summarized in

Table 4-4. The waveforms produced by both simulators are displayed for comparison in Figure 4-I.

4.3.3.2. Ring Oscillator Description

The VIIDL description for the ring oscillator circuit evaluated is presented in Appendix E. The

testing sequence for the full adder was repeated for the ring oscillator.

4.4. Performance Analysis

The performance of the UNIX-based simulator is evaluated in tenns of the subset of the

language implemented, the user's interface, and the CPU execution time and disk space rcquircilnwts.

Where appropriate, the UNIX-based simulator is comparcd to its VMIS-hbasd counticrpart.

4-6

S .%.. '.-..-..-. . ..

4.4.1. Language Features Implemented

As noted earlier, the UNIX-based simulator implements a subset of the language. While this

may be viewed as a shortcoming, one must consider the need for a simulator capable of simulating

100% of the language. The UNIX-based simulator was designed primarily for the university

community, where senior undergraduate and beginning graduate students would be introduced to the

features and capabilities of VI1DL. For this class of users, a simulator capable of simulating the

major features of the language is sufficient. In a multi-user environment such as a university,

qualities such as modest disk space requirements, short turn-around time, and ease of use are of

primary importance. The features implemented in the UNIX-based simulator satisfy the needs of the

user group it was designed for.

4-7

%,%,.

'.]

/i

X

Y

CIN

C

COUT

SUM

0 20 40 60 80
time (ns)

ART Simulator Output (VAX 11/785)
(Build - 0.5s CPU) (Compile - 5.3s CPU) (Sim - 0.3s CPU)

X

Y

CIN

C

COUT

SUM,

0 20 40 60 90
time (ns) "

VMS System Simulator Output (VAX 11/785)
(Model Generate - 92.74s CPU) (Build - 53.69s CPU) (Sini - 6.44s CPU)

-' Figurc 4-1. Full Adder Simulation Results

4 8

CNTRI.

ou--a

OUT2 - ----- -----

OU T3 ---- ----

0z 20 4060 8

CNTRL .

OUT I

OUT2

OUT3-- - -

0 20 40 60 80
time (ns)

ARS yte Simulator Output (VAX 11/75)
(Moueldnrt - 72.77 CPU) (Comil - 5. s CPU) (Si im -.3 CPU) C

Figue 42. Rng scilato ReulS

CN4-9

4.4.2. User's Interface

The UNIX-based simulator provides the user with the option of specifying situlation

parameters on the command line, as well as the ability to view intermediate results during a

simulation. The user must include all simulation parameters, such as the simulation start aud stop

time, in the VHDL description. If the user desires to change any of these parameters, the VIIl)L

description must be modified, analyzed, and simulated. Since the simulation start and stop time do

not affect the syntax and semantics of the VIIDL description, re-analysis is unnecessary. By

providing the user with the opportunity to change these parameters interactively, the analy/cr need

not be run unnecessarily, and the simulator can be executed repeatedly for diffcrent test case, \k ithouit

modification.

Another attribute of the UNIX-based simulator that bosts productivity is the ability to provide

a vector file of input stimuli to a circuit. With this feature, once the user has obtained a correctly

analyzed VIHDL description, it can simulated repeatedly, providing different sets of input stimuli via

the vector file. Since the circuit does not change, analysis of the description and rebuilding the

simulat(or is not performed. The VMS-based simulator provides input stimuli via signal assignments

in the VItDL description. When the input stimuli change, the VHDL description must be changed

and re-analyzed.

4.4.3. Utilization of Computer Resources

An examination of the results for the full adder and ring oscillator designs show the disparity in

CPU time and disk storage requirements for the UNIX-based and VMS-based simulators. Minimizing

these two parameters is particularly important in a multi-user environment such as a university \here

users are faced with resource and time constraints.

4.5. Summary

The UNIX-based simulator was evaluated based on the language features imphkmctnicd, its

user's interface, and its utilization of computer resources. Bascd on the results oblain'd. m1 I 'NIX-

based simulaor provides the university comnliity users with a V 101D. simnulator c:ipable of

%'%

4-10

simulating a major subset of the language that is easy to use, is fast, and has modest storage

requirements.

41.

-'p

%-

%

!. O p.

4

'4 4-1...

5. Conclusions and Recommendations ..

rN

The purpose of this thesis was to develop a VHDL subset simulator to be incorporated into the r

growing AFIT VItDL Environment (AVE). The simulator supports common types, and a major ...J,

subset of the sequential and concurrent statements of VIHDL. The simulator is capable of reading the

VIIDL Intennediate Access (VIA) form produced by the VtlDL analyzer, and producing C code

which is compiled and linked with a sof -.ilai,,r kernel, which is then executed, to produce a report file.

The completion of the VHDL simulator marks a significant contribution to the VHDL CAD

tool set in the AVE. The simulator compares favorably to existing CAD tools.

5.1. Conclusions

The UNIX-based simulator successfully implements a subset of the VIHDL language. The

simulator was designed for runtime efficiency, efficient disk utilization, and ease of use. When a

design was simulated by the UNIX-based version and the VMS-based version, the UNIX-based

version was superior in all three areas, with both simulators producing the same results.

5.2. Recommendations

5.2.1. Implementation of the Complete VIIDL Version 7.2

Since this thesis implements a subset of the language, it seems natural that the simulator be

developed to simulate the entire language. This is the first major step that should be taken. The data

structures used to develop the simulator were designed to later incorporate the features of the entire

language.

5.2.2. Development of the Complete VIIDL Analyzer

Without a complete analyzer, a complete simulator is not very useful. A complete analyier

should be developed before, or in parallel with the development of the complete simulator. If

developed concurrently, the analyzer and simulator should maintain end-to-end thrurTthput

throughout their design. Features should be validated before others are added.

5-1

• o/

0

%
5.2.3. Efficiency

The simulator should be optimized for nintime efficiency. The data structures were d'signcd

runtime efficiency and workability in mind. At the higher levels of design, the data structures and

algorithms were designed for runtime efficiency.

At the lower levels in the design, however, efficiency was occasionally sacrificed in order to

produce a working product. For example, items such as search and sorting algorithms were not

optimally implemented, but the software was designed so these modules could be easily redesigned

and replaced.

5.2.4. IEEE Version

The implementation of this simulator supports the VItDL version 7.2. Future versions of the

simulator should be implemented to adhere to the IEEE VHDL standard.

5.3. Summary

The development of the VHDL simulator makes a significant contribution to the ART VIIDL

Environment, and provide a baseline for the future development of the AVE. Additionally, the

simulator, in conjunction with the analyzer, provide the university community and industry with a

VHDL CAD tool set that operates under the UNIX operating system.

- .
,. °.p|

..-0?

-. o, ,

p.',,.

,

Appendix A - Simulator Test Suite

Included in Appendix A are the VHDL descriptions used to validate the simulator. S

, % .

-- File l.v
-- This description tests the signal assignment statement and
-- process statement.

entity TEST1

(X,Y: in BIT;

CIN: in BIT;
SUM: out BIT; •
COUT: out BIT)

is
end TESTI;

architecture DATAFLOWIMPL of TESTI is 0

BLOCK 1: block

signal C: BIT; -- Local signal declaration

begin
process (X, Y, CIN, C)

begin
SUM <= X xor Y xor CIN after 5 ns;
C <= (Y and CIN) or (X and CIN) or (X and Y);
COUT <= C after 6ns;

end process;

end block BLOCK 1;

end DATA FLOW IMPL;

-. A

.- :*p ...

A-I -. '.

-- File := 2.v -

--This description tests the signal assignment statement. :

entity TEST2

(x,Y: in BIT;
CIN: in BIT;
SUM: out BIT; "*
COUT: out BIT) "-

end TEST2;

architecture DATA FLOW IMPL of TEST2 is,-

BLOCK i1: block -'

signal C: BIT; -- Local signal declaration <
begin

SUM <= X xor Y xor CIN after 5 ns; ,,
C <= (Y and CIN) ; -
COUT <= C after 6ns;. .

end block BLOCK 1;

end DATAFLOWIMPL; <

A-2.'

p.

I'

,~ k

-- ile 2.

-File 3.v
-This file tests Misc, features of VHDL, including .

-- the process Stint, if stint, enable, disable.Ni

entity TEST3

(X,Y: in BIT;
CIN: in BIT;%
SUM: out BIT;
COUT: out BIT)

is
end TEST3;

architecture DATAFLOWIMPL of TEST3 is. 1

BLOCK_1: block

signal C: BIT; -- Local signal declaration

begin
process (X, Y, C, CIN)

begin
if X = Ill then
SUM <= X xor Y xor CIN after 5 ns;
elsif X = '0' then
C <= (Y and CIN) ;

COUT <= C after 6n3;

else
C <= X;

end if;
enable X, Y;
disable C;.-

end process; -

process (X)
begin
if X ' 0' then
disable X;

end if;
end process;

end block BLOCK_1;

end DATA FLOW IMPL;

A -1

%I

PV 1%w 4N. a.F %r -L k

-- File 4.v
-- This description tests the enable, disable stints.

entity TEST4

(X,Y: in BIT;
GIN: in BIT;
SUM: out BIT;
GOUT: out BIT)

is
end TEST4;

architecture DATA FLOW IMPL of TEST4 is

BLOCK_1: block

a' signal C: BIT; -- Local signal declaration

begin
process (X, Y, C)

begin
SUM <= X after 5 ns;

C <=Y;
GOUT <= C after 6 ns;(. enable X, Y;

aif C ='0' then
enable C;

elsif X = '1' then
disable C;

else

enable X;
end if;

end process:
process (X, Y)
begin

C <= transport '1' after 1 ns;
C <- X;

C <= Y after 2ns, X after 3ns;
end process;

a' end block BLOCK_1;

end DATA FLOW IMPL;

A -4U

%;-aa.1% ~ ..-- ~. ~ -. -. -. .&Z

-- File 5.v
-- This description tests the case, enable, disable stmts.

entity TEST5

(X,Y: in BIT;
CIN: in BIT;
SUM: out BIT;
COUT: out BIT)

is
end TEST5;

architecture DATA FLOW IMPL of TEST5 is

BLOCK_1: block

signal C: BIT; -- Local signal declaration

begin
process (X, Y, CIN, C)

begin
SUM <= X xor Y xor CIN after 5 ns;

C <= (X and Y);
COUT <= C after 6 ns;

enable X, Y;
if X = '0' then
disable X;
end if;

case Y is
when '0' => C <= '0' after 1 ns;
when 'I' => C <= 'I' after 3 ns;
end case;
if C = '0' then
enable C;

elsif Y = '1' then
disable C;

elsif X = '1' then
enable X;

end if;
end process;

end block BLOCK 1;

end DATA FLOW IMPL;

A-5

5%

-- File 6.v
-- This description test the case stmt exhaustively.

entity TEST6

(X,Y: in BIT;

CIN: in BIT;
SUM: out BIT;
COUT: out BIT)

is
end TEST6;

architecture DATA FLOW IMPL of TEST6 is

BLOCK_1: block

signal C: BIT; -- Local signal declaration

signal D: INTEGER;

begin
process (C)

begin
C <= (X and Y);
case D is

0 when 0 to 10 => C <= X;
-F when abs(-ll) => C <= Y;

when others => enable C;
end case;

end process;

end block BLOCK_1;

end DATA FLOW IMPL;

A-6

0 • ..
-.' % V.' '.'-' '.'- -.- 5 S.'. " ' ' . '.-.. - 2. V ..*.-.* S. . -. J.

-- File := 7.v

-- Three input XOR, testing process & signal assignment stmt.

entity XOR3

(X,Y: in BIT; -- one-bit addends
Z: in BIT; -- carry in
F: out BIT) -- one-bit sum

is
end XOR3;

architecture DATA FLOW IMPL of XOR3 is

BLOCK_1: block

begin
process (X, Y, Z)
begin
F <= X xor Y xor Z after 41 ns;

end process;

end block BLOCK_1;

end DATA FLOW IMPL;

A-7

JI-

%%

-- File 8.v

-- This description tests the if statement.

entity IF STMT

(A,B: in BIT;

C : out BIT) -

end IF STMT;

architecture DATAFLOWIMPL of IF STMT is

BLOCK_1: block

begin
process (A, B)

begin
if A - '0' then

C <= A;

elsif B = '1' then
C <= 'i';

elsif A = '1' then
C <= B;

else
0C <= '0';

end if;
end process;

end block BLOCK 1;

end DATA FLOW IMPL;

a'

A -8

-- File 9.v

-- This description tests the signal assignment statement.

entity TEST1

is
end TESTI;

architecture DATAFLOWIMPL of TEST1 is

BLOCK 1: block

signal AI,A2: BIT; -- Local signal declaration
signal Bl, B2: integer;

begin
process (Al, A2, B1, B2)

begin
Al <= A2 after 5ns, '0' after 10ns, A2 after 15ns;
A2 <- transport Al after 5ns;
B1 <= B2 + 100 after 2ns;
B2 <= B1;

end process;

end block BLOCK_1;

end DATA FLOW IMPL;

"o.

A-9

. °.

%.

-- File lO.v
-- To test the disable stmt.

entity TESTI 1

is

end TEST1; 71

architecture DATAFLOWIMPL of TESTI is

BLOCK_1: block

signal Al: BIT; -- Local signal declaration

begin
process (Al)

begin
disable Al;
Al <= '1' after 3ns;

end process;

end block BLOCK 1;

end DATA FLOW IMPL;

A-10

='

"i°".

a A -I(.

~- ... - '.

-- File ll.v

-- To test enable

entity TEST1

is
end TEST1; ,

architecture DATAFLOWIMPL of TEST1 is

BLOCK 1: block

signal Al, A2: integer; -- Local signal declaration I

begin
process (Al, A2)
begin
Al <= Al + 1 after 2ns;
A2 <= A2 + 2 after Ins;

end process;
process (Al, A2)

begin
disable Al;
if (Al > 5) then

enable Al;
end if;

A2 <= A2 + 2;

end process;

end block BLOCK_1; -1

end DATAFLOWIMPL;

I

.1"

4 -.-

Appendix B - Full Adder V DL Descripion

I

entity Full _Adder

(X,Y: in BIT;
CIN: in BIT;
SUM: out BIT;
COUT: out BIT)

is
end FullAdder;

architecture DATA FLOW IMPL of Full Adder is

BLOCK 1: block

signal C: BIT; -- Local signal declaration

begin
process (X, Y, CIN, C) |

begin
SUM <= X xor Y xor CIN after 5 ns;
C <= (Y and CIN) or (X and CIN) or (X and Y) ; -.

COUT <= C after 6ns;
end process;

end block BLOCK_1;

end DATA FLOW IMPL;

%-$

.,...

Appendix C - Full Adder VIA File

0 34 48 3 -
0 ANY 0 0 0 0 -1 -1 -1 -1 -1

1 STANDARD 3 4 0 1 -1 -1 -1 -1 -1
2 INTEGER 2 1 0 1 -2147483648 2147483647 2 -1 -1
3 CHARACTER 2 2 0 1 128 0 127 -1 -1

4 BIT 2 2 0 1 2 0 1 -1 -1
5BOEN2 2 0 1 2 0 1 -1 -i15 BOOLEAN221O--

6 FALSE 1 3 0 1 5 0 -1 -1 7
7 TRUE 1 3 0 1 5 1 -1 -1 -1
8 SEVERITY LEVEL 2 2 0 1 4 0 3 -1 -1
9 NOTE 1 3 0 1 8 0 -1 -1 10 1
10 WARNING 1 3 0 1 8 1 -1 -1 11
11 ERROR 1 3 0 1 8 2 -1 -1 12
12 FAILURE 1 3 0 1 8 3 -1 -1 -1
13 NS 1 3 0 1 14 1 -1 -1 15
14 TIME 2 5 0 1 0 2147483647 8 13 -1
15 US 1 3 0 1 14 1000 -1 -1 16
16 MS 1 3 0 1 14 1000000 -1 -1 17 .

17 S 1 3 0 1 14 1000000000 -1 -1 -1
18 0 1 3 0 1 4 0 -1 -1 19
19 1 1 3 0 1 4 1 -1 -1 -1
20 REAL 2 6 0 1 -2147483648 2147483647 20 -1 -1
21 NATURAL 2 1 0 1 0 2147483647 2 -1 -1

22 POSITIVE 2 1 0 1 1 2147483647 2 -1 -1 P
23 STRING 2 3 0 1 22 3 1 0 -1
24 BIT VECTOR 2 3 0 1 21 4 0 0 -1
25 TEST1 3 1 0 25 30 -1 -1 -1 -1
26 Y 1 1 9 25 4 -1 -1 -1 27
27 X 1 1 9 25 4 -1 -1 -1 -1
28 CIN 1 1 9 25 4 -1 -1 -1 26 1
29 SUM 1 1 17 25 4 -1 -1 -1 28
30 COUT 1 1 17 25 4 -1 -1 -1 29
31 DATA FLOW IMPL 3 2 0 31 25 47 -1 -1 -1
32 BLOCK 1 1 4 0 32 47 -1 -1 -1 -1
33 C 1 1 0 33 4 -1 -1 -1 -1
0 0 1 -1 -1 -1 -1 -1
1 9 17 -1 5 7 -1 -1
2 9 20 -1 4 27 5 -1
3 9 20 -1 4 26 -1 -1
4 9 20 -1 4 28 3 -1
5 9 20 -1 4 33 4 -1
6 15 20 -1 -1 2 18 -1
7 9 22 -1 4 29 17 -1
8 9 22 -1 4 27 9 -1
9 9 22 -1 4 26 -1 -1
10 367 22 -1 4 8 11 -1
11 9 22 -1 4 28 -1 -1
12 367 22 -1 4 10 -1 -1
13 11 22 -1 14 -1 -1 5
14 291 22 -1 14 13 12 -1

C-

5. : -'. S "• I

15 13 22 -1 -1 14 -1 -1

.-C .16 2 1 2 2 - i1 5 -1 -1 0
..' "17 359 22 -1 - I1 16 15 - 1L18 4 22 -1 -1 7 36 -1

19 9 23 - 4 33 35 - 1"
20 9 23 - 1 4 26 21 - 1,
21 9 23 - 1 4 28 - - I
22 294 23 - I 4 20 25 - 1-'
23 9 23 - i1 4 27 24 -1

.P
24 9 23 -1 4 28 -1 -125 294 23 -1 4 23 -1 -'126 339 23 -1 4 22 29 -1 1*27 9 23 -1 4 27 28 -128 9 23 -1 4 26 - -1

" 29 294 23 -1 4 27 - -1
.

30 339 23 -1 4 26 -1 -131 91 23 - 14 -1 -1 0
32 291 23 -1 14 31 30 -1
33 13 23 -1 - 32 -1 -134 21 23 -1 5 -1 -1 035 359 23 -1 - 34 33 -136 4 23 -1 -4 19 44 -137 9 24 -1 4 30 43 -138 9 24 -1 4 33 -1 -139 29 24 -1 14 - -1 640 291 24 -1 14 39 38 -141 13 24 -1 -1 40 -1 -
42 21 24 -1 5 -1 30 -1.43 359 24 -1 -1 42 41 -144 4 24 - -1 37 -1 -

35 345 23 -1 -1 34 33 -1
4. 36 42 2 -1 -1 1 44 -1

'

47 301 27 32 - 46 -1 1

C-2-

* 34

4335-4 1 14241-

I-.

Appendix D - Full Adder C Files Generated

#include <stdio.h>

#iniclude "sim stru.h"

int. *s33_p1;
int *s18-Pl;
jnt *326_p1;
int s26 sensproc[2]
int s27_sens_proc[21;
nt s28_senspro([1

int s29_sensyproc~l];
int s30 -sensjproc (1]
in t s33 sens~proc [2];
Driver *pdlt3]; int *psl[lO);

a, sim initialize(sig array, pt)

Signal *sigarray[];
C- ProceS3s table item pt[];

Signal *Newsig()
Signal *s26;
Signal *327;
Signal *328;

~ SSignal *s29;
Signal *s30;

J Signal *s33;
char *strsaveo;
extern int s26_sensproc[];
extern int. s27_sensproc[];
extern mnt 328-sensyrocfl;
extern mnt s29-sensyproc(];
extern mnt 330 sensproc[];
extern mnt s33s3ensproc[];

mnt i;
Driver *Newdrvo;
mnt p4 5 ();
extern Driver *pdl[]; extern mnt *psl[];
Driver *d29;
Driver *d30;
Driver *d33; -

* /* end of declarations *

/* create signals *
s26 - Newsigo; s26->signame -strsave("Y");

C-s27 = Vewsig(); s27->signame = strsave (X");

328 = Newsigo; s28->signame = st rsave ("CIN");
s29 = Newsig(); s29->signame = strsave("SlIM');
s30 = Newsig(); s30->3igname =st r sa ve ("Cut IT")
s33 = Newsig() ; 933->signame =strsave("C");

D-

sigarray(O] =533;
sigarray~l] s28;
sigarray[2] s30;
sigarray[3] s29;
sigarray[4] =s27;
sigarray[5) = s26;

/* declaring drivers *
d29 = Newdrv(); d29->sigptr = s29; s29->drv_ptr = d29;
d30 = Newdrvo ; d30->3igptr = s30; s30->drv r~tr = d30;
d33 = Newdrv(); d33->sigptr =s33; s33->drv p-tr d33;

/* simO2.c *
s26_sens proc[O] - 0;
s27_sen3_proc[0] = 0;
s2B_sensjproc[01 0;
s29_sen3 proc(0] =0;

330_sensjproc[0) 0;
533_sensJproc[O] 0 ;
s26->sensjproc = s26_sensproc;
s27->sensproc = s27_sensyproc;
s28->sens-jroc -s28_sensyproc;
s29->sens~proc - 329_sensproc;
s30->sensProc =s30_sensproc;
s33->sensproc = s33_sensproc;
pt[l] .procjptr = p45;

/* found a sens list for a process *
s27_sens proc[+i-s27_sens proc[0]] 1;

s27_p1 &s27_sensyproc[s27_sens_proc(OlM;
533_sens.proc(++s33_ sensproc[0]] = 1;

s33_p1 = &s33_-sens-jroc~s33_sensproc[0)];
s28-sens-proct++s28_sensprocI0]] 1;

s28_p1 = &s28_sensproc~s28 sensproc[011;
s26_sensyproc(++s26_sens-proc[0)] - 1;

s26p p= &s26_sens-proc[s26-sensproc[0]];
pdl[0] = d29;
psitO] = s27->cur val; -

psl~l] = s26->cur val;
P31(2

] = s28->cur val;
pdl~l) = d33;
psl(3] = s26->cur val;
psl[4] = s28->cur-val;
psl[5] = s27->cur val;
psl[61 = s28->cur val;
psl[7J = s27->cur val;
psl(8) = s26->cur val;
pdl[2] - d30;

psl[91 = s33->cur val;I
/* process table filling of driver & signal list *
pt[01.next =&pt[0);
for(i=l; i<2; i++)
pt~ilnext -NULL;

pt~l].dlist - pdl; pt[l).slist =ps1; '
p45 (dlist, slis9t) *
Driver *dlist[];

D-2

%

int *sljst[J;%

Transact *Newtranso;

extern TIME simtime;

BOOLEAN transport = FALSE;

Transact *newtransl; /*wave*/ .e
newtransl = Newtrans C)
newtransl->future-time = simtime + 5;
*newtransl->val = xor(xor(*slist(OJ, *slistrl]), *slist[21);

post trans(dlist[O), newtransl..transport);

BOOLEAN transport = FALSE;%
Transact *newtransl; /*wave*/
newtransl = Newtranso;
newtransl->future time = simtime + 0;
*newtransl.>val = or(or(and(*slist[31, *slist[4]), and(*slis9tiS],

*sglist[6))), and(*slist[7], *slist[81));
post_trans(dlist[l], newtransl,transport);

BOOLEAN transport = FALSE;0
Transact *newtransl; /*wave*/
newtransl = Newtranso;
newtransl->future time = simtime + 6;
*newtrans1->val =*slist[9];

post_trans(dlist[2), newtransl,transport);

A

%.

D-3

% %e

Appendix E - Ring Oscillator VIII)I. Description

entity Ring oscillator is
end RingOscillator;

architecture df impl of Ring Oscillator is
1 :block

signal st enable, bn enable bit;

signal CNTRLI Outi, Out2, Out3 Bit;

begin

CNTRL <= transport '0' after 30 ns,
'1' after 50 ns,
'0' after 70 ns,
'1' after 90 ns;

Outi <= CNTRL nand Out3 after 5 ns;
Out2 <= not Outl after 5 ns;
out3 <= not Out2 after 5 ns;

end block 1;
end df impl;

E - I

* - - ~ ~ J, R' J ,,I

S Si

* References

Aylor J.I1. ei at. "VIIDL -- Feature Description and Analysis" IEEE Design and Test of Computers,
3:17-27 (April 1986).

Barbacci Mario R. and Takao Uchara. "Computer Hardware Description Languages: The Bridge
Between Software and Hardware" IEEE Computer, 10: 6-8 (June 1977).

Booch, Grady. Sofnvare Engineering with Ada, 2ed. Melno Park, CA. Benjamin Cummins
Publishing Co., 1987.

Bratton, Capt Randolph M. A Production-Quality UNIX Very High Speed Integrated Circuit
(VIISIC) Hardware Description Language (VIIDL) Subset Analyzer. MS Thesis
AFIT/GCS/MA/87D-1. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, Ol, December 1987.

Carter, Lt Col Harold W. et al. 1986 Research Report AFIT VIIDL/DB/DBMS Research. AFIT-
ENC-TR-87-01. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB, OH, January 1987.

Chu, Yaohan. "Why Do We Need Computer Hardware Description Languages?" IEEE Computer, 7:
18-22 (December 1974).

S.g

d'Abreu, Michael. "Gate-Level Simulation," IEEE Design And Test, 2: 63-71 (December 1985).

Dewey, Allen and Anthony Gadient. "VHDL Motivation" IEEE Design and Test of Computers, 3:
* * 12-16 (April 1986).

Frauenfelder, Capt Deborah J. VIIDL Language Analyzer. MS Thesis AFIT/GCS/ENG/86D-I I.
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, Oi,
December 1986.

Gilman, Alfred S. "VHlDL -- The Designer Environment" IEEE Design and Test of Computers, 3:
42-47 (April 1986).

Intermetrics, Inc. Simulator Program Specification. U.S. Air Force Contract F33615-83-C-1003.
Bethesda, MD., 30 July 1984.

lntermetrics, Inc. VIlDL Language Reference Manual - Revised Version 7.2. U.S. Air Force Contract
IR-MD-045-3. Bethesda, MD., I August 1985.

Intermetrics, Inc. VI1DL User's Manual: Volume I - Tutorial. U.S. Air Force Contract F33615-83-
C-1003. Bethesda, MD., 1 August 1985.

Intermetrics, Inc. VIDL User's Manual: Volume 2 - User's Reference Guide. U.S. Air Force
Contract F33615-83-C-1003. Bethesda, MD., 1 August 1985.

Kernighan, B.W. and Ritchie, D.M. The C Programming Language. Englewood Cliffs, New Jersey. .-

Prenfice-Hall, Inc., 1978.

Li[x)vski, G.J. "Hardware Description Languages: Voices from [he Tower of Babel" IEFE Comtputfr,
10: 14-17 (Jume 1977).

0..

-- 1113-'. 4-i L

Lynch, Maj Williamn Leo. VHIDL Prototype Simnulator. MS Thesis AFIT/GCS/ENG/86D-15. School
of Engineering, Air Force institute of Technology (AU), Wright-Patterson AFB, 01l,
December 1986.

Pressman, Roger S. Software Engineering: A Practitioner's Approach, 2ed. New York. M~ccraw-
Hill Book Co., 1987.

Shahdad, Moe et al. "VIISIC Hardware Description Language" IEEE Computer, 18: 94-101
(February 1985).

Su, Stephen Y.1I. "A Survey of Computer Hardware Description Languages in the U.S.A." IEEE
Computer, 7: 45-49 (December 1974).

Su, Stephen Y.H . "H ardware Description Language Applications: An Itroduction and Prognosis"
IEEE Computer, 10: 10- 13 (June 1977).

B111-2

bo r r ".

Vita

Harvey Hf. Kodama was born on July 6, 1963 in Hlonolulu, lawaii. tie graduated from lolani.

School, Honolulu in 1981 and received a Bachelor of Science in Electrical Engineering degree from

University of Southern California, Los Angeles in May 1986. Upon graduation, he was

commissioned a second lieutenant in the U.S. Air Force through the ROTC program, and was

subsequently assigned to Air Force Institute of Technology, Wright-Patterson AFB, Ohio.

Permanent Address:

-A,..

1438 Kaumoli St.
Pearl City, 111 96782

.O

',.

A.9

VITA-I

," " .- -.. -:.-~A ,-.%"- * " •,• " ' " " %m" % % 1% ." "% '% ' % "" """%
,,~ ~ ~~0- A " ", ?-N , , , , " W P. . "'*- ", '' ''""•:. _..y.y .

SECURITY CLASS;FICATION OF THIS PAGE 9.

REPORT DOCUMENTATION PAGE OM or 0704r0188

1.REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

U.class if ied_____________ ______

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for publ,,ic re'eas---
2b. DECLASS!FICATION i DOWNGRADING SCHEDULEdsribtonu1 re

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

7: iT/ GE / E NG/ 87D - 33_______ ____________ __________

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)
0 f Eng in!Ie eri1n g AFIT/ENG

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

72:7e In-stitute of Technology
a~s~nAFB, OH 45433

Ba. NAME OF FUNDING /SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

t A einro Aeroau tic aI L ab AFWAL/AADE-3

6c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

'.%'z n-Pa.:e,-s o n AF B, OH 45433

11 TITLE (Include Security Classification)

7 UNIX-RACED INTEWRACTIVE VHDL STIULATnR
PERSONAL AUTHOR(S)

0
13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month.,a)1 PAGE COUNT

. S S ROM Mar 7TO D(-8 1987 Dec 7
116, SUPPLEMENTARY NOTATION inis tesis is submitted in partial fullfillmt2-.*

of~ereou-irements for the Master of Science degree at Air -cr1ce-
1 cf Tc hnc logy, Wr ight Patterson, AFB, OH.

17. COSATI CODES I8 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP VH PT

0 t) q~~imul ftor SirnUlatior Mode. HJPRTPJ*F 1'sc Ia r.

19. ABSTRACT (Continue on reverse if neessary and identify by block number)

J'D;STRiBUTION AVAILABILITY OPABS'ROC' 21 ABSTRACT SECURITY (LASSIFICATION
4j NCI-ASSIP E DUNL, MITED E3 SAVE AS RPT E T1C u)SERS u

2aNAME OF RESPONSIBLE INDiVIDOAL 22b TELEP-ONE (include Area Code) 2 IESVO

>s o .uio aUS-AF 2~3 25V-61 3 A ':

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CtASS,FtCA- ON O'"IS PAO-E

.r. e%

This thesis effort investigated and implemented a .

UNIX-based VHDL subset interactive simulator. The

simulator was written in the C programming language.

The simulator is capable of handling many of the VHDL

operators, sequential assignment statements, and

concurrent statements. Although the simulator is a

subset, the data structures were designed to

incorporate the features of the complete VfllL version.

7.2.

0.w.0

S S?

%e

% g_ eS .

0

0'%

4--,

!..,

-J .

ATF .
SEo

FILMED: ,'.S -

-
I'-

*1

-'. S

.-

~'."

,

